Learning Theory and Algorithms for Forecasting Non-stationary Time Series
نویسندگان
چکیده
We present data-dependent learning bounds for the general scenario of nonstationary non-mixing stochastic processes. Our learning guarantees are expressed in terms of a data-dependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. We use our learning bounds to devise new algorithms for non-stationary time series forecasting for which we report some preliminary experimental results.
منابع مشابه
Forecasting Non-Stationary Time Series: From Theory to Algorithms
Generalization bounds for time series prediction and other non-i.i.d. learning scenarios that can be found in the machine learning and statistics literature assume that observations come from a (strictly) stationary distribution. The first bounds for completely non-stationary setting were proved in [6]. In this work we present an extension of these results and derive novel algorithms for foreca...
متن کاملSome New Methods for Prediction of Time Series by Wavelets
Extended Abstract. Forecasting is one of the most important purposes of time series analysis. For many years, classical methods were used for this aim. But these methods do not give good performance results for real time series due to non-linearity and non-stationarity of these data sets. On one hand, most of real world time series data display a time-varying second order structure. On th...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملA new adaptive exponential smoothing method for non-stationary time series with level shifts
Simple exponential smoothing (SES) methods are the most commonly used methods in forecasting and time series analysis. However, they are generally insensitive to non-stationary structural events such as level shifts, ramp shifts, and spikes or impulses. Similar to that of outliers in stationary time series, these non-stationary events will lead to increased level of errors in the forecasting pr...
متن کاملTheory and Algorithms for Forecasting Time Series
We present data-dependent learning bounds for the general scenario of non-stationary nonmixing stochastic processes. Our learning guarantees are expressed in terms of a datadependent measure of sequential complexity and a discrepancy measure that can be estimated from data under some mild assumptions. We also also provide novel analysis of stable time series forecasting algorithm using this new...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015